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ABSTRACT

As people’s daily life becomes increasingly inseparable from various
mobile electronic devices, relevant service application platforms
and network operators can collect numerous individual informa-
tion easily. When releasing these data for scientific research or
commercial purposes, users’ privacy will be in danger, especially in
the publication of spatiotemporal trajectory datasets. Therefore, to
avoid the leakage of users’ privacy, it is necessary to anonymize the
data before they are released. However, more than simply removing
the unique identifiers of individuals is needed to protect the trajec-
tory privacy, because some attackers may infer the identity of users
by the connection with other databases. Much work has been de-
voted to merging multiple trajectories to avoid re-identification, but
these solutions always require sacrificing data quality to achieve
the anonymity requirement. In order to provide sufficient privacy
protection for users’ trajectory datasets, this paper develops a study
on trajectory privacy against re-identification attacks, proposing a
trajectory K-anonymity model based on Point Density and Partition
(KPDP). Our approach improves the existing trajectory generaliza-
tion anonymization techniques regarding trajectory set partition
preprocessing and trajectory clustering algorithms. It successfully
resists re-identification attacks and reduces the data utility loss of
the k-anonymized dataset. A series of experiments on a real-world
dataset show that the proposed model has significant advantages in
terms of higher data utility and shorter algorithm execution time
than other existing techniques.
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1 INTRODUCTION

With the rapid development of mobile devices and communication
technologies, location-based information online service platforms
are widely used, which are highly relevant to people’s daily lives
and bring convenience. For example, after a user opens a naviga-
tion software, the application automatically sends location-based
queries to the server, pulling map query results regarding the cur-
rent area, such as nearby restaurants, car parks, shopping centres,
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and banks. When a user accesses such a Location-based Informa-
tion Service (LBS) application, the network operator of the mobile
device can extensively record data about their movement trajectory
[24], i.e. the sequence of location coordinates that the user passed
over some time. Releasing the collected information to the public
not only facilitates the research work of scientific organizations
but also plays a vital role in the transparency of authorities such as
operators and governments. However, the publication of data can
be exploited by malicious attackers, resulting in the disclosure of
user privacy.

Due to the rapid development of high-capacity storage and data
analysis techniques, it is possible for attackers to distinguish the tra-
jectory travelled by an individual from publicly released trajectory
datasets and to obtain more sensitive privacy information by inte-
grating their location and route with other databases [31]. Hence it
is generally the correspondence between a user’s spatiotemporal
trajectory and the individual identity. However, it is not sufficient
to simply erase the direct unique identifiers from the database to
resist attacks. This is because once an attacker combines the quasi-
identifiers with known background knowledge, it is possible to
deduce the correspondence, thus causing danger to user privacy,
property, security and reputation. Therefore, how to scientifically
encrypt datasets has become an important issue in data release and
privacy protection today.

In order to guarantee the privacy of users despite the public re-
lease of trajectory data, it is necessary to employ various techniques
to process the trajectory data before releasing it. Many scholars
have worked on the issue of trajectory privacy attacks and protec-
tion, proposing various techniques to achieve privacy protection in
LBS, such as generalization, obfuscation and fuzzing. Nevertheless,
although these existing techniques can protect user privacy from
being attacked or exposed under certain circumstances, the corre-
sponding algorithms are usually of high time and space complexity.
Moreover, due to the specificity of trajectory shape distribution
and the sensitivity of location information, the privacy protection
processing will lead to the loss of information to a large extent,
thus reducing the utility of the data.

To address the problem above, we propose a privacy protection
methodology for user trajectories adopting machine learning tech-
niques to prevent revealing the private information of LBS users on
the one hand and to retain the features and accuracy of the original
trajectories as far as possible on the other hand, so as to reduce the
loss of information after data processing. Specifically, it is required



that trajectories from different users in the released dataset are
indistinguishable from each other. As a result, trajectories in the
original dataset typically need to be replaced with the generalized
trajectory for several users. The process of thus replacing a specific
value with a more general and imprecise value is called general-
ization [1]. The higher the level of generalization, the higher the
extent of privacy protection, but the lower the data utility of the
published trajectories and the higher the loss of information after
generalization. In order to balance the degree of privacy protection
and the generalization information loss, we preprocess trajectories
by segmenting them according to the point density and generalize
them based on the idea of DBSCAN cluster algorithm [11], achiev-
ing the resistance of the released dataset to re-identification attacks
and preserving the distribution features of the trajectories in the
best manner possible. To the best of our knowledge, our paper pro-
poses such a partition preprocessing mechanism for the first time.
Our main contributions are summarised as follows.

o We investigate the shortcomings of existing trajectory privacy-

preserving algorithms and propose a trajectory K-anonymity
model based on Point Density and Partition (KPDP). The

deficiencies of the existing models mainly stem from the

irregularity of the shape distribution of real trajectories

and the specific data structure, making it difficult to mea-
sure the similarity between trajectories, and thus unable to

accurately cluster and generalize trajectories, resulting in

a high information loss in the released dataset relative to

the original dataset. Based on this situation, KPDP can seg-
ment trajectories based on point density before clustering

them so that the length of trajectories is relatively balanced

and the spatial distribution characteristics of the original

trajectories are retained, yielding a lower generalization

information loss than other models.

e To further enhance the utility of anonymized trajectory
datasets and to achieve k-anonymity, this paper proposes
an adaptive DBSCAN trajectory clustering algorithm. The
algorithm measures the distance between trajectories us-
ing the loss from the alignment of trajectories and then
clusters them based on sample density. However, due to
the uncertainty of the number of samples in the clusters
and the possible presence of noise from DBSCAN, direct
adoption of its idea cannot guarantee k-anonymity. We
consequently developed an adaptive DBSCAN trajectory
clustering algorithm that can automatically adjust the val-
ues of parameters based on the number of trajectories and
noise in each cluster and repeatedly call the core module to
cluster. The main advantage of DBSCAN over other unsu-
pervised machine learning-based algorithms is that it is not
constrained by given values of parameters and can produce
clustering results that better reflect the characteristics of
the trajectory distribution, thus improving the data utility
of the released dataset.

o We conducted extensive experiments based on a realistic
trajectory dataset to evaluate the privacy-preserving effects
of segmentation preprocessing mechanisms and trajectory
clustering algorithms under different privacy metrics. The
experiment results show that our approach performs better
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in terms of information loss and running time compared to
other existing approaches.

The subsequent structure of this paper is organized as follows.
Section 2 introduces and defines trajectory privacy attacks, privacy
anonymity criteria, privacy-preserving methods, generalization
hierarchy models, and trajectory alignment techniques. We then
show an overview of KPDP in Section 3. Following this framework,
we illustrate the rationale of the segmentation preprocessing mech-
anism and the design of the anonymization model in Section 4 and
5. The experiment results and evaluation are presented in Section
6. Finally, we conclude with an overview of our contributions in
Section 7.

2 BACKGROUND AND RELATED WORKS
2.1 Attack Model

A trajectory privacy attack is the acquisition of a user’s private in-
formation from a trajectory dataset by an attacker with background
knowledge. In general, most studies assume that the background
knowledge known to the attacker is part of the spatiotemporal
points on the user’s trajectory, and the privacy information the
attacker attempts to disclose is the complete trajectory data of that
victim. For a given anonymized dataset, Zhen Tu et al. [39] denote
the set of users as U = U; and the corresponding set of trajecto-
ries as T = T;, where T; denotes the spatiotemporal points of the
trajectory of user U;. A constant number of partial points sampled
from the actual trajectories is considered the attacker’s external
background knowledge, denoted as E = E;, where E; denotes the
attacker’s external observation of the user U;. With any external
information E;, an attacker makes a successful re-identification
attack if he can match only one trajectory, whose formulation is
shown in Eq. (1).

1 |T; | T, NE;,Tj e T| =1,
o SiGz1
0 otherwise

where C; denotes whether the user U; is re-identifiable and ||
denotes the size of the set *.

In addition, adversaries can also launch attacks based on more
public information. Zhen Tu et al. [38] stated that an attacker could
infer a victim’s motivation and behaviour to visit a location by
associating the Point of Interest (Pol) that the user passes on a map
with the primary function of its corresponding location. Huaxin Li
et al. [23] matched the locations shared by users on social networks
with their real travel trajectories to enable external attackers to infer
information such as their age, gender, and education. John Krumm
[18] quantified the effectiveness of using different attack algorithms
to recognize the location of subjects’ homes and then identify them
through a programmable web search engine. According to [40], the
types of location privacy attacks explicitly include Single position
attack [27], Multiple position attack [2, 13, 36] and Context linking
attack [15, 25, 33]. Although there are many approaches to attacking
user privacy, re-identification attack remains the most fundamental
problem. This paper focuses on studying resistance to privacy issues
caused by re-identification attack.



A Trajectory K-Anonymity Model Based on Point Density and Partition

2.2 Privacy Model

The protection of individuals from re-identification attacks has
been a topic of much discussion in recent years. The k-anonymity
criterion is the most commonly used privacy-preserving metric to
resist re-identification attacks for data publishing within the pri-
vacy and anonymity domain. K-anonymity is a concept introduced
by Samarati and Sweeney in 1998. K-anonymity requires that each
record stored in a published dataset should be indistinguishable
from at least k — 1 other records [29, 30, 35], i.e. it requires that the
same quasi-identifier refers to at least multiple records, making it
impossible for adversaries to connect records with other databases
by quasi-identifiers and thus deduce user identity and more private
information. Current k-anonymity implementations are mostly
used to protect data anonymity for category and numerical at-
tributes in general relational databases, including Generalization
and suppression, Incognito, Top-down specialization, Clustering,
and Multidimensional partitioning [12, 21, 22]. However, for such
irregular geometric data structure as trajectory, it requires a specific
processing method to achieve k-anonymity [3, 15, 32, 41].

In this paper, we need to ensure at least k distinct trajectories in
each cluster obtained from the original trajectory set and generalize
them to identical anonymous records to form a trajectory dataset
that conforms to k-anonymity.

2.3 Defense Techniques

Among diverse researches to achieve k-anonymity of trajectory
data, generalization is one of the most dominant approaches. Ac-
cording to the different details of generalization techniques, such
as the encoding and operation of the Domain Generalization Hier-
archy (DGH) tree, there are three main types of generalization: full
domain generalization, subtree generalization and cell level general-
ization [42]. Acar Tamersoy et al. [37] proposed a heuristic approach
based on the concept of generalization to achieve k-anonymity. Sina
Shaham et al. [31] used a heuristic and a variant k-means algorithm
for trajectory clustering and anonymization. Marco Gramaglia et
al. [14] used a k-normalization algorithm to address the efficiency
problem of generalization during the anonymization of trajectory
datasets.

In addition to generalization methods, many researchers have
worked on resisting trajectory privacy attacks from multiple other
perspectives. The authors of [8, 13, 28] provide special treatments
for sensitive locations on maps to protect the semantic privacy
of trajectories. Zhen Tu et al. [39] protect trajectories from re-
identification and semantic attacks based on k-anonymity, l-diversity
and t-confidentiality. There are also researches which generate stop-
ping points and noise points to obfuscate the original trajectory set,
demonstrating the effectiveness of resistance to virtual location-
information [6, 10, 17]. Jiaxin Ding [9] prevents an attacker from
identifying a specific user’s trajectory by exchanging the user’s ID
at the intersection of the trajectory. Jae-Gil Lee et al. [20] sliced the
trajectory into line segments and clustered the new set of segments
based on a definition of the distance between the segments. A mid-
dleware structure and an algorithm for adjusting the resolution of
location information along the spatial or temporal dimension was
introduced by [15], which satisfies a specified anonymity constraint
within a given region.

This paper proposes a trajectory k-anonymity approach to pre-
serve privacy via generalization techniques with low loss of data
utility and algorithm time complexity.

2.4 Generalization for Secure Data

Generalization techniques enable the goal of ensuring the privacy
of published dataset without compromising data availability. Gener-
alization and suppression[35] are used to provide privacy to individ-
uals. Pre-defined generalization hierarchy[16] allows the construc-
tion of generalization hierarchies before data masking. Full domain
generalization hierarchy[29] enables the mapping of attributes to a
more general domain in the domain generalization hierarchy.

A DGH tree is a quantitative model of information loss for gen-
eralizing numerical or categorical attributes [17]. In the anonymity
domain, the structure of DGH trees has several different ways of
formation. The structure of a DGH tree for numerical attributes can
either be predefined by the user based on the usage scenario [16] or
built dynamically during the generalization process [4]. Category
attributes often require the manual creation of hierarchical struc-
tures considering attribute characteristics and usage scenarios [34].
Due to the complexity of the practical situation, not all anonymiza-
tion processes for category attributes apply to the DGH tree model.
For the generalization of the trajectory dataset in this paper, the
latitude and longitude of the trajectories are usually used to dy-
namically construct the DGH tree and generalize the trajectory set
based on this model while calculating the caused information loss.

2.5 Trajectory Alignment

Dynamic Sequence Alignment (DSA) is a trajectory alignment algo-
rithm derived from the sequence alignment method of proteins and
DNA in biology [5, 19]. The algorithm uses a dynamic program-
ming approach to obtain the loss matrix for the alignment of two
trajectories recursively, and then from the backtracking of this loss
matrix, find the strategy that can make the merging of these two
trajectories produce the least information loss and subsequently
obtain the merged trajectory and the minimum information loss
value.

Based on this, the Progressive Sequence Alignment (PSA) algo-
rithm is derived as a multi-sequence alignment algorithm capable
of aligning a cluster of trajectories [7]. The PSA algorithm can
sequentially perform DSA operations on the trajectories within a
cluster to obtain a synthetic trajectory obtained by aligning all tra-
jectories within the cluster, and the PSA algorithm is often used to
generalize the clusters of trajectories formed by clustering because
it first selects the longest trajectory from a group of trajectories
as the base trajectory, and then sequentially selects the remaining
trajectories within the group in order of trajectory length from
longest to shortest to align and synthesize with the base trajectory
based on DSA. The generalized trajectory generated after DSA pro-
cess will become the new base trajectory for the subsequent DSA
process until all trajectories in the group have been aligned with
the base trajectory.



3 SYSTEM OVERVIEW

3.1 System Utility Measurement

In the KPDP framework, trajectory alignment is the key to per-
forming trajectory anonymization, and information loss is incurred
in trajectory alignment. In order to calculate the loss of KPDP in
the process of anonymizing trajectories more accurately and effi-
ciently, a new DGH tree is proposed in this paper. This DGH tree
is a partially ordered tree structure, which is able to map the spe-
cific and generalized values of attribute A for a certain attribute A.
The root node of the DGH tree indicates the case with the highest
degree of generalization. Our DGH tree is constructed by dividing
a number of small intervals of equal length within the range of
corresponding values taken and then using these small intervals
as leaf nodes to construct a full binary tree. If the number of leaf
nodes is not enough to fill the bottom level of the binary tree, some
invalid points are added to fill it up. A simple illustration of a DGH
tree with a 4-layer structure is shown in Figure 1. The leaf nodes
numbered 12 can be generalized to the parent node 6 or the ancestor
nodes 3 and 1. Specifically, the DGH trees of KPDP in this paper
are two DGH trees formed by building latitude and longitude in the
trajectory set, corresponding to the x-axis and y-axis coordinate
systems on the map plane space, respectively.

Level
0 1
e
1 2 3
/\ N
2 A AN N
3 9 10 11 12 13 14 15

Figure 1: Schematic diagram of the DGH tree structure used
in the utility measurement of KPDP

For KPDP, the information loss generated by this system mainly
comes from the generalized information loss in the process of sat-
isfying the k-anonymity criterion. The calculation of generalized
information loss is based on the relationship between nodes on
the DGH tree. The generalized information loss includes single-
node generalized information loss as well as multi-node generalized
information loss.

Definition 1. Single-node generalized information loss: The
information loss incurred when generalizing a node to a parent or
higher level node is calculated as shown in Eq. (2).

Lossg(node;j, nodej) = loga(LF (node;)) — loga(LF (node;)) (2)

Where Lossgy(node;, nodej) is the generalization information loss
generated by generalizing node; to node;, LF(nodey)returns the
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number of leaf nodes owned by nodey.. The special case of leaf nodes
being generalized to the root is called suppression[31], and in the
suppression case, the generalization information loss is calculated
as shown in Eq. (3).

Lossg(node;) = H )

Where H denotes the height of the DGH tree.

Definition 2. Multi-node generalized information loss: Any
two nodes on the DGH tree need to be generalized by finding
the smallest subtree containing both nodes. The Lowest Cmmon
Ancestor (LCA) of two nodes is the result of their generalization.
The information loss caused by generalizing two nodes to their
LCA nodes is calculated as shown in Eq. (4).

Lossg(node;j, nodej, noderca) = Lossy(nodepca, node;)
+Lossg(noderca, nodej) “)
Since the trajectories input to KPDP system usually has irregular
geometry, in order to cluster different trajectories to achieve the
purpose of trajectory anonymization of KPDP, this paper uses PSA
algorithm in order to cluster multiple trajectories in PSA. We need
to calculate the trajectories with the smallest relative distance and
the closest shape for clustering to achieve the purpose of trajectory
anonymization. In order to complete the calculation process of PSA,
this paper adopts the DSA algorithm to calculate the distance be-
tween trajectories and the information loss generated in the process
of clustering trajectories and uses the information loss generated by
trajectory alignment as a measure of the relative distance between
trajectories in clustering. In DSA, the generalization information
loss of generalizing two trajectory points and suppressing a certain
trajectory point is calculated based on the DGH tree generalization
model with the corresponding dimensional attributes. According to
Eq. (3) and Eq. (4), for any two trajectories and, when DSA is per-
formed on these two trajectories, the recursive equation of dynamic
programming is shown in Eq. (5).

SAmatrix[i][j] =
SAmatrix[i—1][j — 1] + (Lossg(pi X, q;.X, X cA)
min +Lossg(pi-Y,q;.Y, Yrca)), ©)

SAmatrix[i][j — 1] + (Lossg(q;.X) + Lossg(g;.Y)),
SAmatrix[i — 1][j] + (Lossg(pi.X) + Lossg(p;.Y))

3.2 KPDP Workflow

KPDP is mainly composed of two parts, which are the Partition
model and the Anonymization model, the trajectory dataset of mul-
tiple users is the input of KPDP, and the anonymized trajectory
dataset is the output of KPDP. In this case, because the length differ-
ence of two trajectories close to each other is large, the information
loss from DSA alignment is large, and thus the two trajectories can-
not be grouped into one cluster in the clustering algorithm based
on the distance of the trajectories, thus makes the clustering in
Anonymization model less effective and generates a larger infor-
mation loss. As shown in Figure 2, it can be found from Eq. (4)
that in the process of aligning trajectory try with trajectory tra, p1
and q1, p2 and g2 are generalized to multiple nodes, while g3, g4,
gs are generalized to the root node of DGH tree by a single node,
and this process will produce excessive information loss. In this
paper, we set up a Partition model to reduce the information loss
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of KPDP anonymization while ensuring the requirement of KPDP
anonymization.

try
P1

P2

Figure 2: Schematic diagram of the DGH tree structure used
in the utility measurement of KPDP

The specific workflow is shown in Figure 3. The trajectory
dataset needs to be preprocessed by the Partition model first, which
enables all trajectories to be processed in advance to keep the origi-
nal geometric features of trajectories in the Anonymization model
as much as possible, as well as to prevent excessive information loss
in the process of Anonymization model. The partition model pre-
vents the loss of information in the process of the Anonymization
model. The processed datasets are transferred from the Partition
model to the Anonymization model, which uses the PSA algorithm
and the adaptive DBSCAN clustering algorithm proposed in this
paper to complete the trajectory clustering, and finally outputs the
anonymized trajectory datasets of the KPDP system.

Dataset
/ KPDP \

Anonymized
Trajectory Dataset

Figure 3: KPDP Workflow

4 PARTITION MODEL

Based on the workflow of KPDP in Section 3.2, this section focuses
on the segmentation preprocessing of trajectories to reduce the
generalization information loss of trajectories afterwards. This pro-
cess refers to segmenting the trajectories based on point density
before anonymizing the trajectory set so that the released dataset
will retain the distribution features of the trajectories and reduce
the generalization information loss in the alignment and cluster-
ing steps as much as possible. We illustrate the three main steps
of the partition model - generating auxiliary points on the trajec-
tory, then clustering the point set, and segmenting the trajectory
based on the clustering distribution. The steps are interlocked to
make the length of trajectories relatively average. The specific seg-
mentation preprocess of the original trajectory set is schematically
shown in Figure 4. First, for the original trajectory set in Figure

D .
/ .--"'.'c"".-- i
°°®

(a) The original trajectory datasct (d) Cluster the points

-

(b) Generate virtual points with spacing d

w

(e) Segment trajectories by cluster boundary and
remove non-endpoint virtual points

s e, —t—
-.....::.-f-‘.".' o ._";._.f‘/ —

(c) Treat all points on the trajectories as a whole point set (f) Finish with the partitioned trajectory dataset

Figure 4: Schematic diagram of the preprocessing

4(a), Figure 4(b) shows the generation of green auxiliary points on
the trajectory with the same distance d. All the points in Figure
4(c), including the actual existing and virtual auxiliary points, are
considered whole point sets for clustering. The clusters of points in
Figure 4(d) are distinguished from each other by different colours,
i.e., points of different colours belong to different clusters. These
points are mapped back to the trajectory set in Figure 4(e), and the
trajectories are partitioned at the neighbouring points belonging to
different clusters according to the boundaries of the point clusters.
The final result is shown in Figure 4(f), where the auxiliary points
as trajectory endpoints after segmenting are kept in the trajectory
set and form a new segmented dataset with other actual points.

We conducted extensive experiments to evaluate our segmenta-
tion model. The results demonstrate that, compared with the direct
method of clustering and generalizing the trajectories, adding the
preprocessing step can not only effectively reduce the overall gen-
eralization information loss but also speed up the running of the
trajectory clustering algorithm.

4.1 Auxiliary Point Generation

Before segmenting the trajectory, relatively dense auxiliary points
are added between adjacent points. These virtual auxiliary points
are equally spaced, as shown in Figure 4(b). Since the actual points



on the trajectory are time-ordered, the primary purpose of setting
auxiliary points is to make line segments of different lengths have
the same effect on the density of points in their neighbourhoods so
that the line segments represented by points can be more similar
to the solid form of the line in space. auxiliary points are defined
as follows.

Definition 3. Auxiliary Point: Points that do not exist in the
trajectory dataset and are used to reflect the spatial distribution
structure of the trajectory. For the line segment formed between
two time sequence adjacent points, starting from the end of the
previous time sequence, a auxiliary point is added for each fixed
distance d along the line segment.

The smaller the distance between the generated auxiliary points,
the better the point set can reflect the distribution shape of trajecto-
ries in space. In contrast, if the spacing is too small, it will increase
the amount of processed data and affect the operation efficiency.

4.2 Point Set Clustering

In order to make the length of trajectories relatively uniform, par-
titioning trajectories based on the difference in spatial trajectory
density is our proposed solution. Regarding distribution, the density
of trajectories in macroscopic space is reflected as the density dif-
ference of the points on the microscopic level. The point clustering
algorithm can automatically gather the close points into clusters,
reflecting the density distribution of points on the plane space.

For the trajectory dataset with auxiliary points, all coordinate
points on the trajectory are regarded as the whole point set to
be clustered. Meanwhile, the mapping relationship between each
point and the cluster it belongs to is recorded for the subsequent
segmentation operation.

We called the k-means point clustering method from the ma-
chine learning Sklearn library to divide the points into k clusters
based on the spatial Euclidean distance between them. The k-means
algorithm is one of the most basic and widely used clustering algo-
rithms that can divide data samples with different attribute values
into a designated number of clusters and use the mean of all sam-
ples within each cluster as the representative points [26]. The main
idea is to divide the data set into different classes by iteratively
adjusting the clustering centres so that the mean error criterion
function, which measures the clustering performance, is optimal,
thus ensuring that the generated clustering results are compact
within clusters and sparse from each other.

The effective operation of the clustering algorithm is generally
based on the homogenization and standardization of the data feature
variables. Since the attribute values used to calculate the Euclidean
distance between trajectories only contain two dimensions, longi-
tude and latitude, and there is no significant data disparity with
uniform magnitude, the k-means algorithm can be directly applied
to divide the point set on the plane space map into clusters.

4.3 Trajectory Segmentation

In this stage, we use the clustering boundaries generated by the
k-means algorithm to segment the trajectories to reduce the dis-
parity in the length of trajectories in the original dataset. Referring
o0 [20], the sum of segmented trajectories is not necessarily the
original trajectory but a characteristic reflection of its structure
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distribution. Therefore, when trajectory clustering is performed
later, the segments of a trajectory may belong to several different
clusters and subsequently be generalized to different anonymous
trajectories. However, the accuracy of the trajectory clustering will
be relatively higher due to the reduced cost of information loss
when aligning long and short trajectories later. In contrast, the
overall trajectory clustering will lose more detailed features and
incur higher generalization information loss during generalization.
In the KPDP framework, after clustering the segmented trajectories,
the length of trajectories within each cluster is relatively consistent,
so the shape of the anonymous trajectories will be more reasonable.

The segmentation process of the trajectory set is described as
follows. Iterate through each trajectory in the trajectory dataset
containing auxiliary points and check whether the adjacent points
on a trajectory belong to the same cluster. If they are not the same,
the trajectory is segmented, and a new trajectory is generated.
When the endpoint of a segmented trajectory is a auxiliary point,
it will be added to the newly generated trajectory dataset as a real
trajectory point, while other non-endpoint auxiliary points will
be removed and will not be involved in the subsequent privacy-
preserving processing. The pseudo-code for generating a segmented
trajectory dataset is shown in Algorithm 1, whose input is the
trajectory dataset containing auxiliary points.

Algorithm 1: Trajectory segmentation algorithm

input :Dataset T
output:Partitioned Dataset Tyurtitioned

Let Tpartitioned be an empty set that will store the new
partitioned trajectory dataset;

for tr inT do

Let new;, be an empty set that will store the new
trajectory;

Append tr[0] as the first point to new;;

for p in range(0, len(tr) — 1) do

if the point p and the adjacent point p+1 belong to the
same cluster then
| Append tr[p+1] to new;,

else

if point p is not a real point then
| Append tr[p] to news,

Append newy to Tartitioneds

Let new;r be an empty set that will store the new
trajectory again;

Append tr[p+1] to newy,;

B Append newt, to Tpartitiuned;
return Tpartitioned

On the one hand, the maximum value of distance lost in segment-
ing the trajectory is d because the spacing will not be smaller than
the distance between the adjacent auxiliary points and the actual
point or between two actual points when generating virtual auxil-
iary points along the trajectory direction before. In order to make
the segmented trajectory closer to the original one, the parameter
d should be as small as possible without causing the algorithm to

be overly complicated so that the loss due to segmentation can be
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minimized when cutting the line segment between two adjacent
points. On the other hand, the trajectory segmentation should not
only ensure accuracy but also have simplicity, i.e., use as few points
as possible to characterize the shape of the trajectory. The virtual
auxiliary points that are not endpoints on the trajectory do not
contribute significantly to the subsequent generalization process
of the trajectory but rather increase the time complexity of the
alignment algorithm, so they are discarded when generating the
new segmented trajectory dataset.

5 ANONYMIZATION MODEL

In order to achieve the anonymity requirement, we introduce clus-
tering algorithms that can gather data samples based on similar-
ity. Clustering is an unsupervised learning method in the field of
machine learning that is capable of discovering patterns implicit
in a dataset. By clustering the preprocessed trajectory set wisely,
it can produce a low information loss during generalization and
anonymization, further maintaining the distribution characteristics
and data utility of the original trajectory set. In this paper, two
trajectory clustering algorithms are considered to construct the
anonymization model, respectively, the iterative k’-means algo-
rithm and the adaptive DBSCAN algorithm. Both use the alignment
information loss obtained by DSA as the distance indicator between
two trajectories and provide a design such that the number of tra-
jectories contained in each cluster is no less than k, ensuring com-
pliance with the privacy-preserving requirement of k-anonymity.
Among them, the adaptive DBSCAN algorithm is the primary one
that this paper focuses on as a method that can significantly im-
prove the utility of the anonymous trajectory dataset and reduce
the model running time, while the iterative k’-means algorithm
is mainly used for comparison. These two algorithms run inde-
pendently in the anonymization model of KPDP. After clustering,
KPDP will apply PSA to generalize the trajectories of each cluster
to derive the anonymous trajectory set for publication.

5.1 Iterative K’-means algorithm

We borrowed the idea from [31] to perform k’-means clustering on
trajectories (where the “” is used to distinguish the “k” that has
different meanings in k-means and k-anonymity) and ensure the
number of trajectories within each cluster is at least k by iteration.
K’-means is a distance-based clustering algorithm. Its clustering
similarity is calculated using the mean distance between objects
within each cluster. The brief idea is to divide data objects into k’
clusters according to the input value of k’, making the similarity
within each cluster higher and the similarity between different clus-
ters lower. The iterative k’-means algorithm is used for comparison
with the adaptive DBSCAN algorithm.

The basic k’-means algorithm works by first selecting any k’
objects from the dataset as the initial cluster centers and assigning
the remaining objects to the most similar clusters (i.e., closest in
the distance) to them based on their similarity (usually Euclidean
distance). Then for each cluster, a new cluster center is calculated
based on the mean value of the distances of all objects in the cluster.
This process is repeated until the cluster centers no longer change
or the standard measure of clustering performance converges.

Measuring the relative distance between trajectories is a major
difficulty with an irregular data structure like spatiotemporal tra-
jectories. The iterative k’-means algorithm in this paper uses the
information loss generated by DSA of two trajectories to measure
the relative distance of trajectories. In addition, when designing the
trajectory clustering algorithm based on k’-means, many technical
details need to be adjusted according to the characteristics of the
trajectory data and the rationality of the processing method so that
the iterative k’-means algorithm can effectively cluster and gener-
alize the trajectories in the trajectory privacy protection model. Its
workflow is described as follows: (1) Calculate the initial number
of clusters based on the value of k required for k-anonymity and
the number of trajectories in the dataset. (2) A randomly selected
trajectory from the trajectory set is used as the initial clustering
center for each cluster. (3) Assigning all trajectories in the trajectory
set to the cluster center that produces the least loss of alignment
information with its DSA. (4) Apply the PSA algorithm to each clus-
ter and generalize and merge the trajectories it contains to form a
new cluster center. (5) Repeat steps (3) and (4) until the trajectories
contained in each cluster no longer change, completing k’-means
clustering of trajectories. (6) Dissolve the clusters containing less
than k trajectories and repeat the steps of k’-means clustering until
all clusters conform to k-anonymity.

Compared with the basic k’-means algorithm, the iterative k’-
means algorithm gets the centers of a cluster of trajectories by PSA,
except for the initial clustering centers randomly selected from the
set of trajectories. In addition, the ordinary k’-means algorithm
determines whether to perform the next clustering iteration based
on the change of the cluster centers. However, due to the specificity
of the generalization trajectory, when the cluster assignment is no
longer changed, it marks the iteration stop to reduce the algorithm
complexity.

Theoretically, the iterative k’-means algorithm is random for
selecting initial clustering centers. This may lead to a high overall
generalization information loss by generalizing each cluster when
the distribution of initial clustering centers is poor, reducing the
data utility of the final trajectory set used for publication. The
experimental performance of the iterative k’-means algorithm on
real datasets will be discussed in Section 6.

5.2 Adaptive DBSCAN Algorithm

Inspired by the iterative k’-means algorithm, we propose the adap-
tive DBSCAN algorithm, which can capture the distribution charac-
teristics among trajectories with more details. DBSCAN is a density-
based spatial clustering of applications with noise, which measures
the similarity between data samples in terms of density [11]. Com-
pared with k’-means, DBSCAN does not need cluster centres to
instruct clustering. Instead, it searches for high-density regions
separated by low-density regions through the density connectivity
of the samples. These separated high-density regions are the corre-
sponding clusters to which the corresponding samples belong. In
contrast to k’-means, which is unable to discover spherical clusters,
DBSCAN can not only discover clusters of arbitrary shapes but also
has special treatment for noisy samples to suppress the influence
of abnormal data on clustering.



The basic DBSCAN algorithm requires two parameters to be
entered before working: the neighbourhood radius epsilon and
the minimum number of samples contained in the neighbourhood
minPts. Once it starts running, the DBSCAN algorithm will traverse
and label each sample in the dataset. First, for any sample that has
not been labelled, find all samples whose relative distance to it is
within epsilon. If the number of samples contained in the neigh-
bourhood of the sample reaches the threshold indicator minPts, the
sample and all samples in its neighbourhood will form a cluster, and
the sample will be marked as visited. Then recursive processing is
performed for the other samples in that cluster to extend the cluster
by the same steps.

Conversely, if the number of samples contained in the neighbour-
hood of that sample is less than minPts, the sample is temporarily
marked as noise. Once the recursion is over, the cluster has been
sufficiently extended, i.e. all samples are marked as visited. The
algorithm then proceeds to traverse the points in the dataset, and
the points that have not been labelled are processed similarly. The
basic DBSCAN algorithm outputs clusters from sample density
expansion and possibly noisy samples that are still labelled as the
noise at the end of the algorithm.

We conducted an intensive study on the utilization of DBSCAN
ideas for the trajectory clustering algorithm and proposed an adap-
tive DBSCAN algorithm that meets the privacy preservation re-
quirement. Similar to the iterative k’-means algorithm, the adaptive
DBSCAN algorithm measures the relative distance of two trajecto-
ries by the information loss generated by DSA. In order to make the
anonymous trajectory dataset generated by clustering and general-
ization fulfil the k-anonymity criterion, we assign k as the value of
minPts in the adaptive DBSCAN algorithm. This is because the pa-
rameter minPts is the threshold indicator of whether a trajectory is
clustered with its neighbouring trajectories, so as long as the value
of minPts is greater than k, it can ensure that the number of trajec-
tories within each cluster is at least k, resulting in k-anonymity of
the trajectory dataset.

As for the noisy samples that may exist in DBSCAN, we also
handled them specifically in the trajectory privacy-preserving sce-
nario. Analogous to the iterative k’-means algorithm, the adaptive
DBSCAN algorithm repeatedly calls the core DBSCAN code until all
clusters satisfy k-anonymity in order to make the noisy trajectories
eventually satisfy the anonymity requirement as well. The noisy
trajectories formed by DBSCAN each time will become the new
input dataset for the next clustering, while another input parameter,
the neighbourhood radius epsilon, will be enlarged appropriately
to lower the judgment criterion of density connection between sam-
ples so that those noisy trajectories can be clustered more easily.
The algorithm will not stop calling the DBSCAN core code until
there are no more noisy samples in the dataset.

The pseudo-code of the adaptive DBSCAN algorithm is shown
in Algorithm 2. It takes the trajectory dataset, the value of k of the
k-anonymity criterion and the neighbourhood radius parameter
epsilon as inputs, and it outputs the clustered trajectory dataset. Its
workflow is described as follows: (1) For trajectories that have not
been labelled in the trajectory set, (2) if the number of trajectories
with the information loss generated by DSA with that trajectory
is less than the neighbourhood radius epsilon is greater than the
threshold minPts (which takes the value of k), find all trajectories

Wanshu Yu, Haonan Shi, and Hongyun Xu

connected to that trajectory to form a cluster, and mark all trajecto-
ries in the cluster. (3) otherwise, mark the trajectory as noise, find
the next unmarked trajectory, and repeat the previous step until all
trajectories are marked. (4) For the set of trajectories that are still
marked as noisy at this time, adaptively enlarge the value of the
neighbourhood radius epsilon and repeat the above steps until all
the generated clusters satisfy k-anonymity.

Algorithm 2: Adaptive DBSCAN algorithm
input :Dataset T, Anonymity Criterionk, Neighbor Radius
epsilon
output:Trajectory Cluster Dataset Ty,

Let Tpyys, be an empty set that will store the clusters with at
least k trajectories;
while true do
T, Tclusk —
TrajectoryDBSCANClustering(T, epsilon, k);
Append the cluster in Tepys to Topys, ;
if |T| < 2 = k then
Cluster T'’s remaining trajectories together and append
the last cluster to Tepys, ;
L break
if epsilon < topepsilon then
| Increase the value of epsilonadaptively
else
Cluster T’s remaining trajectories together and
append the last cluster to Tyq, ;
L break

return Tpp,q,

In the loop of the algorithm, the value of neighbourhood radius
epsilon will be changed adaptively based on the statistical distribu-
tion of the relative distance between trajectories. For example, in
the first several rounds, the density of the trajectories is high, and
the relative distances between trajectories will be concentrated at
a low level. If we increase the neighbourhood radius epsilon by a
small margin, we can efficiently cluster the trajectories in the area
of high density. As looping times increase, the number of trajecto-
ries with low relative distances decreases, and the main distribution
of distances among trajectories will tend to a higher value range.
At this point, the neighbourhood radius epsilon must be raised by
a greater magnitude to reduce invalid loops of the core function
and improve the efficiency of the adaptive DBSCAN algorithm.

Theoretically, the time complexity of the adaptive DBSCAN
algorithm will be an order of magnitude lower than the iterative
k’-means algorithm due to no iteration of cluster centres required,
which significantly reduces the time consumption in the trajectory
clustering session. In addition, the algorithm can specialize noisy
data to enhance the data utility of the generalized trajectories, and
the stability of the trajectory cluster generation process is also an
advantage it has. As for the logic of the algorithm, how to adaptively
adjust the value of the neighbourhood radius parameter is the key
point to improve the operation efficiency. Reducing the algorithm’s
complexity and optimizing the parameter values are unavoidable
contradictions requiring a balanced algorithm design. Extensive



A Trajectory K-Anonymity Model Based on Point Density and Partition

experiments on a real dataset will evaluate the performance of our
proposed model.

6 EVALUATION

This section describes the experiments on trajectory privacy pro-
tection of the KPDP framework against re-identification attacks
on real-world datasets. We mainly evaluate and analyze the ef-
fectiveness of the preprocessing step of the trajectory set and the
performance of two trajectory clustering algorithms and explore
the role of different values of parameters in the k-anonymity crite-
rion on the experimental procedure and results. The experimental
results reflect the superior performance of our method in all aspects.

6.1 Dataset Introduction

The trajectory dataset used in the experiment is from the Geolife
project [45-47] and the T-Drive dataset [43, 44], which consists of
GPS trajectories of mobile device users in the Beijing area, specif-
ically including the longitude and latitude information and time
series relationship of trajectory points. After obtaining the basic
trajectory data, the original trajectory set used for trajectory pri-
vacy protection in this paper is all the trajectories intercepted in
an area on the map of Beijing, China, corresponding to the lat-
itude and longitude ranges of 116.300000 ~ 116.316000°E and
39.989500 ~ 40.000000°N. The road network model composed of
this trajectory set is shown in Figure 5, where The trajectory con-
sists of longitude and latitude coordinate points collected after a
certain time interval.
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Figure 5: Road network mapping of the original trajectory
set

6.2 Experimental Process

In the process of realizing k-anonymity privacy protection for tra-
jectory datasets, in order to enhance the data utility of the final
anonymous trajectory set, the model in this paper preprocesses
the original trajectory set by segmenting the trajectories based on
point density. In the preprocessing, firstly, auxiliary points used to
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Figure 6: Trajectory point set clustering results
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Figure 7: Road network mapping of the segmented trajectory
set

reflect the spatial distribution of trajectories need to be generated
on the trajectories, and then all the points in the trajectory set are
k-means clustered, and finally, the trajectories are partitioned ac-
cording to the clustering of the trajectory point set. If the adjacent
points on a trajectory are grouped into different clusters, the trajec-
tory is segmented. Figure 5 shows the clustering results of dividing
all points in the trajectory set into 27 clusters by k-means after
adding auxiliary points, and different colors are used in the figure
to identify the different clusters to which the point set belongs.
Based on the clustering in Figure 6, the segmented trajectory set
generated by segmenting the original trajectory set is shown in
Figure 7, and again, the trajectories are distinguished from each
other by color. Due to the randomness of the k-means algorithm
in selecting the initial clustering centers, the segmentation results
usually vary from experiment to experiment, and the number of
segmented trajectories is in the range of about 1200 to 1450, as
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Figure 9: After segmentation preprocessing, the three performance comparisons of the two trajectory clustering algorithms at

different k values

obtained from a large number of reliable repeated experiments.
In the experiments in Figures 6 and 7, the number of segmented
trajectories increases from 270 to 1372.

In order to make the final published trajectory dataset resistant
to re-identification attacks, the trajectory privacy-preserving model
needs to anonymize the trajectory set according to the selected
k-values in k-anonymity criterion. In this process, the DGH tree gen-
eralization model of the trajectory set needs to be established first,
i.e., the corresponding coordinate values of the trajectory points are
represented by the numbers of the leaf nodes on the latitude and
longitude DGH trees. Then the iterative k’-means algorithm and the
adaptive DBSCAN algorithm cluster the trajectories, respectively.
Finally, the clusters of trajectories formed by the clusters are gener-
alized to obtain the trajectory dataset conforming to k-anonymity
and the corresponding loss of generalization information.

6.3 Analysis of Experimental Results

In the experiments on trajectory privacy preservation against re-
identification attacks, this paper will compare and evaluate two
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trajectory clustering algorithms with and without segment prepro-
cessing in three aspects: total information loss, average information
loss per cluster, and execution time.

Figure 8 shows the comparison of the values of the three met-
rics obtained by the iterative k’-means algorithm and the adaptive
DBSCAN algorithm for different k-anonymity metrics without tra-
jectory segmentation preprocessing during the experiment, where
the k-anonymity criterion takes the k of 2, 4, 8 and 10.

As shown in Figure 8(a), the total generalized information loss of
the trajectory set increases with the increases of k. In contrast,
the protection model for trajectory, which is clustering by the
adaptive DBSCAN algorithm, produces lower information loss than
the iterative k’-means algorithm at all four values.

As shown in Figure 8(b), the average generalized information
loss per cluster of the trajectory set also increases with increasing k.
The information loss generated by the iterative k’-means algorithm
is two to four times higher than that of the adaptive DBSCAN
algorithm. The difference becomes more pronounced as the values
increase.
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Table 1: KPDP performance with Partition model and without Partition model

Total Information Loss Average Information Loss Per Cluster
. without with . without with
k clustering i, .\ . k clustering ., L .
. Parition | partition | reduction(%) . Parition | partition | reduction(%)
value | algorithm value | algorithm
model model model model
k=2 k‘-means 154263 150892 2.19 - k’-means 1773.14 818.14 53.86
- DBSCAN 71840 40763 43.26 - DBSCAN 704.31 101.84 85.54
ked k‘-means 218881 175469 19.83 -4 k’-means | 8755.24 3476.56 60.29
- DBSCAN | 112913 105214 6.82 - DBSCAN 2171.4 590.36 72.81
k=8 k‘-means 193291 204264 -5.68 -3 k’-means | 21476.78 6970.07 67.55
- DBSCAN | 162031 150085 7.37 - DBSCAN | 6481.24 1865.16 71.22
k=10 k‘-means 201961 239978 -18.82 -10 k’-means | 22773.44 | 12142.007 46.68
- DBSCAN | 167921 164364 2.12 - DBSCAN | 8396.05 2530.06 69.87

The execution time of the two trajectory clustering algorithms
in the model is shown in Figure 8(c), with a decreasing trend of the
algorithm execution time when increasing. In the experiments for
each value, the execution time of the adaptive DBSCAN algorithm is
stable within 5000 seconds, while the execution time of the iterative
k’-means algorithm is much higher than the other algorithm for
values 2 and 4, and relatively lower and smoother for values 8 and
10, but still higher than the other algorithm.

In Figure 9, a comparison of the values of the three metrics
obtained by the iterative k’-means algorithm and the adaptive DB-
SCAN algorithm with different k-anonymity criteria for the dataset
preprocessed by trajectory segmentation at the time of the experi-
ment is shown, where the k-anonymity criteria take the values of
2,4, 8 and 10.

Similar to the overall trend and comparison in Figure 8, the
adaptive DBSCAN algorithm outperforms the iterative k’-means
algorithm in three aspects: total generalized information loss (Fig-
ure 9(a)), average information loss per cluster (Figure 9(b)), and
execution time (Figure 9(c)). Overall, the total generalized infor-
mation loss and the average information loss per cluster of both
trajectory clustering algorithms subsequently increase with the
increase of k, and the execution time decreases as the value of k
increases gradually.

In contrast, compared with Fig 8, in both the adaptive DBSCAN
algorithm and the iterative k’-means algorithm, the total infor-
mation loss and average information loss per cluster of the final
generated anonymized dataset after segmentation preprocessing by
the partition model are relatively small, and the consumed execu-
tion time is also reduced to different degrees. Especially it is evident
in the per-cluster average information loss metric of the adaptive
DBSCAN algorithm, which can be obtained from Figure 9(b), that
the information loss per cluster obtained by the adaptive DBSCAN
algorithm decreases by about 86%, 73%, 71% and 70%, respectively,
when the values of 2, 4, 8 and 10 are taken. Compared with the
trajectory set without segmentation in Figure 8(b).

Such a decrease is because the preprocessing of the partition
model can make the clustered trajectories closer within the clusters.
Besides, the smaller the value k, the larger the number of clusters
after segmentation, and the closer the trajectories that make up
the clusters will be. The more obvious is the effect of the partition
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model in reducing the information loss of generalization within the
clusters.

The experimental results shown in Figure 8 and Figure 9 are
consistent with the expectations of KPDP design in this paper. For
the case where the generalized information loss increases with the
value of k, this is because an increase in the value of k directly leads
to an increase in the number of trajectories in each cluster, resulting
in a more extensive total information loss and average information
loss per cluster. The superior performance of the adaptive DBSCAN
algorithm in the three metrics is attributed to the ability of the algo-
rithm to cluster trajectories close to each other more scientifically
and efficiently than the iterative k’-means algorithm, with lower
time complexity.

According to a series of experiments, it is proved that the way of
adjusting the cluster centers in the k’-means algorithm is not fully
applicable to the trajectory clustering process, while the adaptive
DBSCAN algorithm forms each cluster by the expansion of the
density connection between trajectories, which not only reduces
the information loss but also can effectively speed up the processing
of the model. The effectiveness of adding a segment preprocessing
step in both trajectory clustering algorithms is due to the fact that
after preprocessing, the relatively long trajectories in the dataset are
avoided to be aligned and combined with shorter trajectories in the
trajectory clustering and generalization process, so the information
loss from the final generalization is reduced. In addition, because
the long trajectories in the dataset are split into relatively short
trajectories, the situation that two long trajectories are aligned
with each other will be significantly avoided in the alignment, so
the execution time of the trajectory clustering algorithm is also
shortened.

In summary, the adaptive DBSCAN algorithm and the trajectory
set segmentation preprocessing step proposed in this paper to have
superior performance in controlled experiments under different
scenarios, validating the theoretical expectation of reducing gener-
alization information loss and speeding up model processing when
designing the model. In the privacy-preserving phase of trajectory
resistance to re-identification attacks, the trajectory preprocess-
ing and adaptive DBSCAN algorithm for trajectory clustering to
form anonymous trajectory datasets in Figure 9 has significant
advantages in terms of data utility and running time for each value.
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CONCLUSION

In this paper, we proposed a trajectory privacy protection frame-
work against re-identification attacks, which can effectively anonymize
the spatiotemporal trajectory dataset. We innovated a point density-
based trajectory segmentation preprocessing mechanism to enable
accurate clustering and generalization of trajectories. Furthermore,
we applied DBSCAN in machine learning to trajectory clustering
and presented the adaptive DBSCAN algorithm, which minimizes
the generalization information loss to acquire higher data utility
while ensuring the k-anonymity of the generated trajectory dataset.
Extensive experiments on a realistic dataset also showed that there
is the superiority of the short execution time of our approach com-
pared with previous works.
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